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An improved plane wave expansion method (IPWEM) is deduced by the combination of a dynamic differential equation, the 
Bloch theory and Fourier expansion. The IPWEM is proposed to improve the convergence of the conventional plane wave 
expansion method (CPWEM) in dealing with large band gaps in phononic crystals. The IPWEM is supported by the 
experiments: bend waves transmitting through a 2D phononic crystal. The numerical simulations show that the IPWEM has 
better prediction precision and higher efficiency compared to the CPWEM, in searching for large band gaps in phononic 
crystals. 
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1. Introduction 
 
The study of phononic crystals has become more and 

more important with their increasing usages in acoustic 
engineering applications [1]. Phononic crystals are 
considered idea materials for making acoustic frequency 
filters owing to its periodic, heterogeneous structures [2] 
and the possibility of having phononic band gaps. Based 
on the relevant experimental research and theoretical 
modeling, phononic crystals have been successfully 
designed as high efficiency waveguides [3, 4] and 
frequency demultipliers [5, 6] in the past decade. 

 The existence of band gaps in periodic materials has 
been studied extensively; theoretically and experimentally 
[1, 7-9]. Among those, conventional plane wave expansion 
method [10, 11] and finite difference time domain method 
[12] are two of the popular conventional theoretical 
modeling. 

The conventional plane wave expansion method 
(CPWEM) expands material parameters in reciprocal 
vectors based on its lattice structure, and the resulted 
dynamic differential equation is transformed to algebraic 
eigen-value equations with the utilization of the Bloch 
theory. The CPWEM has been widely adopted in 
theoretical predictions and calculations of phononic band 
gaps in many kinds of phononic crystals due to the 
simplicities of its theoretical assumptions. The agreement 
between CPWEM and experimental research seems to be 
excellent in locating the band gaps [13]. 

 With the understanding that large acoustic band gaps 
in materials with periodic structure is a large contrast in 
their physical properties of the inclusions and the host 
material, many researches of phononic crystals have 

focused on the search for large band gaps in their periodic 
structures [14]. Even though the CPWEM works well in 
most of the studies, it shows poor convergences dealing 
with large differences between elastic parameters of 
inclusion and matrix where the Gibbs phenomena becomes 
obvious; the otherwise piecewise continuously 
differentiable periodic function has a jump discontinuity at 
the interface of the materials [15]. 

 In this paper, the CPWEM is modified 
mathematically as an improved plane wave expansion 
method (IPWEM) with the attempts to force the overshoot 
of the Fourier series to die out sooner to increase the 
piecewise continuity of the CPWEM. The theoretical 
model is created by the association of a dynamic 
differential equation, Bloch theory, and the Fourier 
expansion. The advantages of the IPWEM over the 
CPWEM are verified through the interpretations of 
experimental simulations using a phononic crystal thin 
plate with cylindrical inclusions of Al2O3 embedded 
periodically in the epoxy matrix. 

 
 
2. Improved plane wave expansion method 
 
The dynamic differential equation of heterogeneous 

thin plate with uniform thickness h  can be expressed as 
following general form [16]: 
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where w  is the transverse displacement in the direction 
z , ( )3 212 1D Eh n= -  is the bending rigidity in 
which E  is the Young’s modulus and u  is the Poisson’s 
ratio, ha r= , Db n= , ( )1Dg n= - . All of these 
variables are periodic functions of position vector 

( ),x yr = , so the unified form of these material 
parameters can be given as ( )M r . 

According to Bloch theory, the displacement fields in 
the phononic crystal thin plate can be written in the 
following form: 

 
( ) [ ] ( ), exp i( ) kw t t ww= × -r k r r       (2) 

 
where k  is the wave vector limited in the first Brilliouin 
zone. ( )kw r  is a periodic function with the spatial 
periodicity of material parameters: 
 

( ) ( )1exp ikw W= ×å 1

1

G
G

r G r         (3) 

 
where ( )1 22 ,n a n ap=1G  is the two-dimensional 
reciprocal lattice with 1 2, 0, 1, 2, ,n n n= ± ± ±L  and 
W 1G  is the corresponding Fourier coefficient. 

( )M r  can also be rewritten by Fourier series: 
 

( ) ( ) 2
2

2exp i
G

M M= ×å Gr G r         (4) 

 
where 2MG  is the corresponding Fourier coefficient 
under the two-dimensional reciprocal lattice 2G  with 
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where 2 2

0f r ap=  is the filling fraction of the 
inclusions which is defined as the ratio between the 
sectional area of a cylinder inclusion and a unit cell, and 

IM , MM  are material parameters of inclusion and 
matrix. 2PG  is the structure factor which is defined 
as ( )2

2exp i d /
A

P S= ×òG G r r . Taking the two-dimensional 
phononic crystal which circular inclusions embedded in 
matrix with square lattice for example, 

( ) ( )2 1 0 02 22P fJ r r=G G G where f is the volume 
fraction of inclusion, ( )1J ·  is first order Bessel function 
of the first kind, and 2G  is the modulus of reciprocal 
vector 2G , and 0r  is the radius of inclusion. 

Substituting Eqs. (2)-(5) into Eqs. (1), we have the 
following eigen-value equation: 
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     (6) 

 
where 3 1 2= +G G G . Eqs. (6) is an infinite-order 
eigen-value problem, so the Fourier series need to be 
truncated to finite items if we want to solve the problem 
numerically. Usually, finite reciprocal vectors near the 
origin are chosen. The more reciprocal vectors we choose, 
the closer the numerical result to the true value. When n  
inclusions are selected in half axis direction which means 
( )22 1n +  reciprocal vectors are chosen, we can obtain 
( ) ( )2 22 1 2 1n n+ ´ +  order matrix equation from Eqs. 
(6) written in the standard eigen-value equation as: 
 

2w =P W Q W                (7) 
 

where P  and Q  are ( ) ( )2 22 1 2 1n n+ ´ +  order 
matrixes, and W  is ( )22 1n +  order array. The 
elements of P , W  and Q  are: 
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1
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where ( )j1G  is the reciprocal vector in the 1G  
reciprocal vector space with index j , ( )i3G  is the 
reciprocal vector in the 3G  reciprocal vector space with 
index i . 1GW  is the eigen-displacement coefficient in the 

1G  reciprocal vector space with index j . 
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3. Numerical calibration of IPWEM and  
  CPWEM  
 
In order to study the difference between IPWEM and 

CPWEM, we consider bending waves propagating in a 
phononic crystal thin plate with cylindrical inclusions of 
Al2O3 embedded periodically in the epoxy matrix (Fig. 1). 
Inclusions are arranged square lattice with lattice constant 

0.02a =  m. The radius of the inclusion is 
0.006r = mm, and thickness of the plate is 
0.002h = mm. Material parameters of inclusion and 

matrix are shown in Table 1. 
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(a) Top view  (b) Cross section 
 

Fig. 1. Phononic crystal thin plate with square lattice. 

 
 

Table 1. Material parameters of inclusion and matrix. 
 

 Density 

r /( 3kg/ m ) 

Young’s modulus 

E /( GP a ) 

Poisson’s ratio 

n  

Inclusion 
(Al2O3) 

3970 396.4 0.24 

Matrix 
(Epoxy) 

1180 4.35 0.378 

 
 

When we choose 25n =  (2601 plane waves), the 
first 10 bands calculated by IPWEM and CPWEM are 
shown in Fig. 2, which continual line is the numerical 
simulation of CPWEM and dashed line is the result of 
IPWEM. ta cwW=  is the normalized frequency which 

t 1160c =  m/ s  is the transverse wave velocity in epoxy. 
The results show that two methods agree well in low 
frequencies (1-4 bands), but they don’t agree well in high 
frequencies (5-10 bands). Moreover, the results of 
CPWEM are always lower than the results of IPWEM 
either in low frequencies or high frequencies. 
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Fig. 2. Band structure of phononic crystal thin plate. 
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(a) Fourth order eigen-frequencies 

2 4 6 8 10 12 14 16 18 20 22 24 26
8.0

10.0

12.0

14.0

16.0

18.0

20.0

2 4 6 8 10 12 14 16 18 20 22 24 26
8.0

10.0

12.0

14.0

16.0

18.0

20.0

 Μ
 Γ
 Χ

Ω

n

 Μ
 Γ
 Χ

CPWEM

IPWEM

 
(b) Tenth order eigen-frequencies 

 
Fig. 3. The trend of eigen-frequencies calculated with 
 varied plane waves of the highly symmetric points. 

 
 

Then vary numbers of plane wave are chosen 
( 2,3, ,25n = L ) and we calculate the band structure by 
IPWEM and CPWEM respectively. The trend of fourth 
and tenth eigen-frequencies at the highly symmetric 
points M , G and C  are shown in Fig. 3. We can draw 
the following conclusions: 

a. The eigen-frequencies calculated by CPWEM 
always converge to real value downward, while the 
eigen-frequencies calculated by IPWEM always converge 
to real value upward. This means, if same numbers of 
plane wave are chosen, the results of CPWEM are always 
bigger than real value and the results of IPWEM, and the 
results of IPWEM are always smaller than real value and 
the results of CPWEM. 
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b. IPWEM converges faster than CPWEM either in 
high frequencies or in low frequencies. The frequencies by 
IPWEM are converged when 4n ³  in low frequencies 
and 8n ³  in high frequencies. Meanwhile, the results 
of CPWEM are still not converged even when 20n > . 

c. Low-order frequencies converge faster than 
high-order frequencies either by IPWEM or CPWEM. 

Above all, the results show that IPWEM has good 
convergency in both low frequencies and high frequencies 
because of the appropriate choice for ijP . Therefore, 
eigen-value functions are piecewise smooth and 
continuous at the interface of inclusion and matrix.  

 
4. Conclusions 
 
An improved plane wave expansion method (IPWEN) 

is proposed and theoretically deduced. The IPWEM is 
proved to effectively improve the convergence of the 
CPWEM at the material interface. The calculations and 
interpretations of experimental simulations by both 
methods lead to the following conclusions: 

a. The IPWEM shows better convergence at the 
interface of inclusion and matrix, and therefore, provides 
better prediction precisions on the existence of large 
acoustic band gaps. The progresses are directly related to 
the better piecewise smoothness and continuity of the 
eigen-value functions presented in the IPWEM; 

b. The IPWEM is especially suitable for searching 
large acoustic band gaps in phononic crystals for its ability 
of mathematically reducing or eliminating the Gibbs 
phenomena in their periodic structures. For that reason, the 
IPWEM is expected to be widely used in studies of 
periodic materials which have large contrast in physical 
properties between the inclusions and the matrix in future 
researches. 
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